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Fig. 1. We proposed a method for estimating SVBRDF that utilizes a novel capture setup. This setup separately acquires two material appearance images
under near-field and far-field conditions. In comparison to solely using near-field point lighting, the far-field image provides more comprehensive information
on specular reflectance. The integration of near-field and far-field images effectively resolves the ambiguity of SVBRDF estimation from a limited number
of images. Here, we present two results for real scenes. Besides, both quantitative evaluations and qualitative visualizations demonstrate that our method
achieves a superior quality compared to the state-of-the-art methods.

Recovering spatial-varying bi-directional reflectance distribution function
(SVBRDF) from a few hand-held captured images has been a challenging task
in computer graphics. Benefiting from the learned priors from data, single-
image methods can obtain plausible SVBRDF estimation results. However,
the extremely limited appearance information in a single image does not
suffice for high-quality SVBRDF reconstruction. Although increasing the
number of inputs can improve the reconstruction quality, it also affects the
efficiency of real data capture and adds significant computational burdens.
Therefore, the key challenge is to minimize the required number of inputs,
while keeping high-quality results. To address this, we propose maximizing
the effective information in each input through a novel co-located capture
strategy that combines near-field and far-field point lighting. To further
enhance effectiveness, we theoretically investigate the inherent relation
between two images. The extracted relation is strongly correlated with
the slope of specular reflectance, substantially enhancing the precision of
roughness map estimation. Additionally, we designed the registration and
denoising modules to meet the practical requirements of hand-held capture.
Quantitative assessments and qualitative analysis have demonstrated that
our method achieves superior SVBRDF estimations compared to previous
approaches. All source codes will be publicly released.
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1 INTRODUCTION
Reconstructing the high-quality spatial-varying bi-directional re-
flectance distribution function (SVBRDF) under the as convenient
as possible acquisition condition has been a long-standing prob-
lem in computer graphics. One of the most accessible methods is
to capture a few appearance images by the mobile phone with a
flash light. However, the estimated result is inherently ambiguous
because different combinations of SVBRDF parameters can yield
the same appearance.

Given the learned prior from data, the plausible SVBRDF can be
produced from single-image input [Deschaintre et al. 2018; Guo et al.
2021; Zhou and Kalantari 2022; Sartor and Peers 2023; Wang et al.
2023]. However, the limited information from single-image input
makes it challenging to recover high-quality results. The addition
of more input images can effectively improve the quality of recon-
struction [Deschaintre et al. 2019; Gao et al. 2019; Guo et al. 2020;
Zhu et al. 2023]. However, increasing the number of inputs puts
significant pressure on the real data capture process. Additionally,
the added images contain a large amount of redundant information,
which increases the computational burden but provides very limited
help in improving the quality of reconstruction. Therefore, the key
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challenge is to maximize the effective information in each input im-
age, thus minimizing the required number of inputs for high-quality
SVBRDF reconstruction.
In this paper, we present a novel co-located capture strategy to

obtain two highly complementary appearance images, thereby im-
proving the efficiency of input information. The key observation is
that a far-field point light can be approximately considered as distant
lighting. As shown in Fig. 2, since the surface normal of planar mate-
rials is almost upward, under the far-field central lighting condition,
the captured appearance image is dominated by specular reflectance.
Conversely, under the near-field central lighting, the captured im-
age reflects a combination of both specular and diffuse reflectance
characteristics. These two appearance images exhibit a significant
difference and also encompass the essential information for SVBRDF
estimation. Therefore, their combined inputs can efficiently reduce
the ambiguity between different reflectance parameters. To extract
more effective information from the input images, we explore the
potential information present in their relationship. Through theoret-
ical derivation, we find that the subtraction of the two images can
reflect the slope of specular reflectance, which is highly related to
the roughness map.We extract this relation and design a two-branch
network to facilitate better SVBRDF estimation.
Technically, to achieve the hand-held capture of input images,

we have the following designs. Firstly, under the conditions of un-
known camera intrinsic and extrinsic parameters, we introduce an
automatic correspondence detection method to assist in registering
two input images to the same concerned material region. Secondly,
under far-field conditions, the uncontrollable positional deviations
caused by hand-held capture become more noticeable. Inspired by
the latest research of relighting [Bieron et al. 2023], we design a
specific denoising method where we treat the removal of these de-
viations as a relighting procedure. It can achieve denoising at the
input stage, thereby reducing the impact of noise on the material
recovery process. We evaluated our methods on both synthetic data
and real-world data, and the results demonstrated that our method
can produce more precise SVBRDF than the existing methods.
In summary, we have the following contributions:
• We present a novel two-image co-located capture strategy
that combines near-field and far-field point lighting.

• We found the subtraction of these two images reflects the
slope of specular reflectance, which closely corresponds to
the roughness map. Subsequently, we designed a two-branch
network to leverage this relation for better SVBRDF estima-
tion.

• We introduced the auto registration and denoising techniques,
ensuring the available two-image capture under hand-held
conditions.

2 RELATED WORK
We discuss near-planar SVBRDF estimation methods under sparse
input and categorize them based on the lighting condition.

2.1 Point Lighting
The rapid development of deep learning techniques enables SVBRDF
reconstruction from sparse point-lighting images. Deschaintre et al.

Fig. 2. We present two material appearance images under the central co-
located point lighting at different capture distances. Under near-field con-
dition, lighting directions on the material sample surface change rapidly.
Therefore, the appearance image combines both diffuse and specular re-
flectance. Under the far-field, lighting directions are approximately parallel
to the surface. The appearance image is dominated by specular reflectance.

[2018] and Li et al. [2018] respectively proposed SVBRDF dataset
and built a deep network to estimate SVBRDF from a single image.
By exploring novel network architectures and training strategies,
subsequent research [Guo et al. 2021; Zhou and Kalantari 2021;
Vecchio et al. 2021] further improved the quality of SVBRDF esti-
mation. Zhou et al. [2022] and Fischer et al. [2022] introduced the
meta-learning to incorporate test-time optimization into the train-
ing process, thereby avoiding overfitting issues. Wang et al. [2023]
integrated two-level basis materials into deep learning, reducing the
ambiguity in single-image estimation. Zhou et al. [2023] proposed a
relightable material generator that can be trained using only a real
flash-photograph dataset. Guo et al. [2023] adopted a divide-and-
conquer solution to address ultra-high resolution SVBRDF capture.
However, the significant lack of reflectance information in single-
image input hinders the reconstruction of high-quality SVBRDF.

To facilitate SVBRDF estimation from multiple input images, De-
schaintre et al. [2019] introduced an order-independent fusing layer
to extend their single-image work. Moreover, they presented a fine-
tuning method for large-scale SVBRDF capture [Deschaintre et al.
2020]. Zhu et al. [2023] designed a two-branch network to learn the
lighting effects in images, thereby eliminating the need for precise
lighting position calibration across multiple images. Additionally,
Gao et al. [2019] employed an auto encoder to embed the SVBRDF
into latent space, thus performing latent-space optimization. Guo
et al. [2020] further constrained the latent space using StyleGAN2
network [Karras et al. 2020]. These methods all capture input im-
ages under near-field lighting. In contrast, our method takes the
combination of near-field and far-field lighting as input. It offers a
higher information density, thus achieving high-quality material
recovery with a lower number of input images.
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2.2 Extended Lighting
Ren et al. [2011] employed a linear light source to scan planar mate-
rials and reconstruct their reflectance properties. Chen et al. [2014]
extended this method to the anisotropic material. Additionally, Ait-
tala et al. [2013] utilized an LCD panel as a programmable light
source to capture isotropic reflectance via frequency domain analy-
sis. Riviere et al. [2016] further explored the use of planar lighting in
the mobile device contexts. Beyond manually-designed planar light-
ing patterns, Kang et al. [2018; 2019] utilized an asymmetric deep
autoencoder to simultaneously train both the SVBRDF recovery
network and the lighting patterns tailored to the physical capture
device. Ma et al. [2021] further advanced the method to accom-
modate free-form scanning contexts. Zhang et al. [2023] explored
the application of learned planar lighting patterns for estimating
SVBRDF from a single image. Additionally, Rodriguez-Pardo et al.
[2023] leveraged a flatbed scanner to produce the type of diffuse
illumination, which is used for the direct capture of diffuse map.
Although extended lighting offers a broader sampling of material
appearance compared to point lighting, the integrated appearance
with lighting pattern is challenging to be decoupled into several dis-
tinct lighting space samples when only a limited number of images
are available. Moreover, during the material acquisition process,
these methods usually require more complex physical devices to
carry the lighting pattern than the point-lighting methods.

2.3 Unknown environment Lighting
Li et al. [2017] proposed a self-augmented strategy to leverage a
limited number of labeled datasets to train a single-image material
inference network under unknown environment lighting conditions.
Ye et al. [2018] further extended this work by using only unlabeled
datasets for training. Martin et al. [2022] proposed a hybrid method
to capture material in the wild. Although unknown environment
lighting conditions are more common in real-world capture, their
instability usually leads to insufficient expression of material ap-
pearance. Recently, large-scale diffusion model has been applied
to many image generation fields. Sartor et al. [2023] introduced a
generative diffusion model into SVBRDF estimation. Vecchio et al.
[2023] further generated tileable materials, which can be used to
capture material under the unknown environment lighting condi-
tions. These method can provide a high-quality material estimation,
but it does not guarantee a pixel-perfect match. Additionally, the
training and inference cost of large-scale model is extremely huge.

3 METHOD

3.1 Problem Statement.
Our goal is to estimate spatial varying material reflectance prop-
erties from two color images. We assume that the material sample
is a nearly planar surface with geometric details that the normal
map can model. Moreover, the Cook-Torrance BRDF model [Cook
and Torrance 1981] with GGX microfacet distribution [Walter et al.
2007] is chosen to represent the reflectance properties. Therefore,
SVBRDF can be represented by four material maps: normal map
𝑛, diffuse map 𝑑 , roughness map 𝑟 , and specular map 𝑠 . Further-
more, two images are captured by a mobile phone camera with a
co-located flash light. The capturing positions are the near-field top

view and the far-field top view, respectively. Note that we only re-
quire a rough capture position and do not calibrate the intrinsic and
extrinsic parameters of the camera. Our method aims at learning a
mapping function 𝐹 to recover material maps𝑀 = {𝑛,𝑑, 𝑟, 𝑠} from
two distinct inputs: the image captured under near-field lighting, de-
noted as Near-field Image 𝐼𝑁 , and the image captured under far-field
lighting, denoted as Far-field Image 𝐼𝐹 , as follows:

𝑀 = 𝐹 (𝐼𝑁 , 𝐼𝐹 ). (1)

𝐼𝑁 and 𝐼𝐹 are both captured at the central position ofmaterial sample
and differ only in the terms of capture distance. It is evident that
there exists some relations reflecting the material reflectance feature
between their appearance variations. However, the challenges lie
in determining what this relation is, and how to use this relation
to serve for material reflectance estimation. Additionally, under
the hand-held capture, collecting available images 𝐼𝑁 and 𝐼𝐹 is
challenging. Firstly, since these two images are captured under two
shots with different distance, their contents are not aligned to a
certain material area. Secondly, the unstable capture position under
hand-held conditions hinders exploring the fixed relation between
the two images. Thirdly, due to the decay of lighting intensity with
distance, Far-field Image typically exhibits low brightness, leading
to a lower signal-to-noise ratio (LSNR).

3.2 Algorithm
To solve the above challenges, we propose NFPLight, as shown in
Fig. 3. The core component is SVBRDF prediction part, including a
relation extraction module and a prediction network. The former
module effectively derives the relation between Near-field Image
and Far-field Image via a sequence of explicit computations. The
latter applies these relational features in the network to serve for
material recovery. Furthermore, NFPLight includes a real data pre-
processing component designed to correct real-world data captured
in hand-held conditions. It ensures the real data are transformed
into reliable inputs for the SVBRDF prediction component. In the
following sections, we discuss the details.

3.2.1 Relation Extraction Module. According to the rendering equa-
tion, two input images captured under a single point light source
can be represented as follows:

𝐼𝑁 = 𝐿𝑁 (𝐷𝑁 + 𝑆𝑁 )𝑐𝑜𝑠𝜃𝑁 ,
𝐼𝐹 = 𝐿𝐹 (𝐷𝐹 + 𝑆𝐹 )𝑐𝑜𝑠𝜃𝐹 . (2)

where 𝐿𝑁 and 𝐿𝐹 represent the lighting intensity, 𝐷𝑁 and 𝐷𝐹 repre-
sent the diffuse reflectance component, 𝑆𝑁 and 𝑆𝐹 represent the spec-
ular reflectance component, while 𝑐𝑜𝑠𝜃𝑁 and 𝑐𝑜𝑠𝜃𝐹 indicate the rela-
tion between lighting direction and normal direction. Variables with
the subscript 𝑁 are associated with the near-field context, and those
with subscript 𝐹 correspond to the far-field. Note that Eq.2 is a typi-
cal rendering equation. As mentioned in Sec. 3.1, we use the Cook-
Torrance to express it, where 𝐷𝑁 /𝐹 = 𝑑

𝜋 , 𝑆𝑁 /𝐹 = 𝐷𝐺𝐹
4(𝜔𝑖 ·𝑛) (𝜔𝑜 ·𝑛) .

To explore the underlying relationship, we attempt subtraction, as
follows:

𝐼𝑁 − 𝐼𝐹 = 𝐿𝑁 (𝐷𝑁 + 𝑆𝑁 )𝑐𝑜𝑠𝜃𝑁 − 𝐿𝐹 (𝐷𝐹 + 𝑆𝐹 )𝑐𝑜𝑠𝜃𝐹 . (3)
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Fig. 3. The overview of our method NFPLight. It has two parts. The first one is the real data pre-processing part. It solves the problems under hand-held real
capture, such as registration and denoising. The second part is the primary SVBRDF prediction part. In this part, the relation map is initially extracted by some
explicit calculations, and then it combines some other images as the input of a two-branch prediction network, thus estimating the SVBRDF. Here, 𝐼𝑁 , 𝐼𝐹
represent the original captured images. 𝐼𝑁 , 𝐼𝐹 represent two images after registration. To simplify the notation, we denote the terms in Eq. 5 as 𝐾 = 𝐾𝐿𝐾𝜃 ;
𝐶𝑀 = 𝑐𝑜𝑠𝜃𝑁 |𝑐𝑜𝑠𝜃𝑁 − 𝑐𝑜𝑠𝜃𝐹 | .

Firstly, 𝐿𝑁 and 𝐿𝐹 are only affected by lighting distance. Given
that the distance variations at different surface points have negligi-
ble impact, 𝐿𝑁 and 𝐿𝐹 can be treated as two homogeneous values.
Considering the central lighting setting, the lighting directions at
the center of the two images are both perpendicular to the surface,
where the parameters exist 𝐷𝑁 = 𝐷𝐹 , 𝑆𝑁 = 𝑆𝐹 and 𝑐𝑜𝑠𝜃𝑁 = 𝑐𝑜𝑠𝜃𝐹 .
Therefore, the intensity scale 𝐾𝐿 can be computed by the ratio of
central values:

𝐾𝐿 =
𝐿𝑁

𝐿𝐹
=
𝐼𝑁 [𝐻/2,𝑊 /2]
𝐼𝐹 [𝐻/2,𝑊 /2] . (4)

where, 𝐻 and𝑊 are respectively the height and width of 𝐼𝑁 and 𝐼𝐹 .
Secondly, once the capture configuration is determined, 𝑐𝑜𝑠𝜃𝑁

and 𝑐𝑜𝑠𝜃𝐹 become fixed. When assuming the normal ideally per-
pendicular to the surface, it allows us to pre-compute their ratio
𝐾𝜃 = 𝑐𝑜𝑠𝜃𝑁 /𝑐𝑜𝑠𝜃𝐹 . Therefore, we derive an intrinsic relationship
as follows, which we define as the relation map 𝑅𝑀 .

𝑅𝑀 =
|𝐼𝑁 − 𝐾𝐿𝐾𝜃 𝐼𝐹 |

𝑐𝑜𝑠𝜃𝑁 |𝑐𝑜𝑠𝜃𝑁 − 𝑐𝑜𝑠𝜃𝐹 |
= 𝐿𝑁 | 𝑆𝑁 − 𝑆𝐹

𝑐𝑜𝑠𝜃𝑁 − 𝑐𝑜𝑠𝜃𝐹
|. (5)

By substituting the above defined 𝐾𝐿 , 𝐾𝜃 , 𝐼𝑁 , 𝐼𝐹 into Eq. 5 and
simplifying, we obtain the form on the right side. It indicates the rate
of change in specular reflectance along with the variation of incident
angles, essentially reflecting the slope of microfacet distributions.
In the GGX model, the roughness parameter controls the shape of
microfacet distributions. Therefore, there exists a close correlation
between the roughness map and the relation map. Besides, since
the analysis is conducted in the slope domain, the color information
of 𝐼𝑁 and 𝐼𝐹 in Eq. 2 becomes irrelevant, prompting us to use their
mean value for the above calculations. Moreover, despite the relation
map being coupled with the influence of surface normal due to
the unknown normal map, it effectively removes the impact of
albedo, significantly reducing the ambiguity in estimating SVBRDF.
Two representative results of relation map extraction are shown
in Fig. 4. The first example is an ideal planar sample, adhering to
our assumption of surface normal. The structure and local intensity
variations of the extracted relation map show a high similarity to
the roughness map. The second one is a nearly planar sample that
exists variations in normal. Its local intensity variations are still

correlated with the roughness map, but the overall structure aligns
with the normal map. Additionally, it is evident from both examples
that the effect of diffuse reflection is effectively removed.

Fig. 4. Relation Map Extraction. We present two results of relation map
extraction. The first example is an ideal planar sample, adhering to our
assumption of surface normal. The second, a nearly planar sample, does not
meet the assumption.

3.2.2 Prediction Network. To better utilize the relation map to facili-
tate the decoupling of SVBRDF parameters, we design a two-branch
neural network to recover SVBRDF, as shown in Fig. 3. It has two
sets of encoders and decoders. The first encoder processes inputs
𝐼𝑁 , 𝐼𝐹 , and 𝑘𝐼𝐹 , with its encoded features enabling the first decoder
to estimate 𝑑 and 𝑠 . Due to the stable relationship in lighting in-
tensity between 𝐼𝑁 and 𝑘𝐼𝐹 , the addition of 𝑘𝐼𝐹 ensures that the
reflectance feature extraction is not affected by intensity variations.
The second encoder processes 𝑅𝑀 and𝑀𝑅 , and the second decoder
takes the combination of both encoder’s features as input to predict
𝑛 and 𝑟 . Considering the challenge of low dynamic range (LDR) cap-
ture, the relation extraction in over-exposure regions is unreliable.
Therefore, a mask 𝑀𝑅 is generated to identify the regions where
intensity exceeds a threshold close to one. Although this is not a
precise split, the identified regions must include the over-exposure
regions. Therefore, it can assist the network in understanding the
confidence of the relation map. Additionally, during the real-data
processing under the unknown lighting position, the non-denoised
images 𝐼𝑁 , 𝐼𝐹 are incorporated into the input of the first encoder to
compensate for the lost information due to the prediction error of
denoising network.
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3.2.3 Registration Module. Given that the material sample is a pla-
nar surface, the registration of these two images can be performed
by a homography transformation. We offer two methods to find
correspondences between two images. For materials with rich tex-
tures, we employ LoFTR [Sun et al. 2021] for automatic detection of
correspondences. In practice, we choose the whole Near-field Image
as the concerned material area and transfer Far-field Image into
the same area by homography. If the automatic detection fails, we
alternatively place a square bounding box on the material, thereby
finding correspondences by identifying corner points. Refer to the
supplementary materials for more details.

3.2.4 Denoising Module. Given the irregular characteristics of cap-
ture position errors and LSNR noise, we employ a deep neural
network to predict denoised images. To train this network, we sim-
ulate both types of noise. For the positional offset from the center
caused by hand-held capture, we use three separate Gaussian dis-
tributions to model errors along the x-axis, y-axis, and z-axis. In
practice, we empirically set the standard deviation of the x-axis and
y-axis to 0.2, and a slightly larger deviation of 1.0 for the z-axis. For
LSNR noise, we begin with a log-normal distribution to simulate
real-world variations in noise intensity. The values sampled from
this distribution serve as the standard deviations in Gaussian distri-
butions that model the random LSNR noise. In our implementation,
the mean values of the log-normal distribution are set at 0.001 for
the Near-field Image and 0.005 for the Far-field Image, both with a
uniform standard deviation of 0.03.

4 IMPLEMENTATION
In this section, we discuss the necessary implementation details of
our method, including the training details and capture details. The
source code and pre-trained model will be publicly released.

4.1 Training Details
Our method includes two networks: a denoising network and a
prediction network. They both employ advanced image-to-image
translation network NAFNet [Chen et al. 2022] as the core archi-
tecture. There are 4-layer encoder-decoder pairs for each U-net
architecture, with skip connections between all layers. Each layer
is composed of a stack of NAFBlocks with a base feature width of
32. The denoising network processes 12-channel inputs, including a
6-channel original Near-field Image 𝐼𝑁 and Far-field Image 𝐼𝐹 , and
a 6-channel logarithmic image flattening the dynamic range [0, 1]
of them. The output is a 6-channel denoised version of Near-field
Image 𝐼𝑁 and Far-field Image 𝐼𝐹 . The inputs of prediction network
are detailed in in Sec.3.2.2, where a logarithmic transformation is
applied to 𝐾𝐼𝐹 , 𝐼𝐹 , 𝐼𝑁 , 𝐼𝐹 , 𝐼𝑁 to flatten dynamic range. All inputs,
except for the 1-channel𝑀𝑅 and 𝑅𝑀 , consist of three channels each.
The outputs of Encoder 1 (E1) and Encoder 2 (E2) are concatenated
and fed into Decoder 2 (D2), where the skip connections within D2
are performed in the same concatenated manner. The final output of
prediction network is 10-channel SVBRDF map, including 3-channel
normal, 3-channel diffuse, 1-channel roughness, and 3-channel spec-
ular.
We implemented NFPLight in PyTorch [Paszke et al. 2019] and

used Adam optimizer [Kingma and Ba 2014] for two-stage training.

In the first stage, the denoising network and prediction network
were individually trained for 400K iterations with learning rates
initially set at 5e-4 and gradually reduced to 1e-5 following a cosine
annealing schedule. Each network was supervised using L1-norm:
the denoising network with ground-truth (GT) denoised images,
and the prediction network with GT SVBRDF maps. During training
of this stage, 𝐼𝑁 and 𝐼𝐹 are replaced with placeholders 𝐼𝑁 and 𝐼𝐹 . In
the second stage, we fine-tune both networks for 100K iterations by
joint training, which is supervised by L1-norm and rendering loss,
similar to [Guo et al. 2021]. It has the same decay-schedule learning
rate ranging from 1e-4 to 1e-5. The training data is sourced from a
public SVBRDF dataset by Deschaintre et al. [2018]. We follow the
default train-test split. All input images has a resolution of 256x256
during training. The total training time takes about 2 days on a
single NVIDIA RTX 4090 graphics card.

4.2 Capture Details
The primary challenge in capturing real data is to find the required
z-axis shooting distance. For ease of use, the distance in our ex-
perimental setup is defined relative to the material surface’s size.
Based on the findings in Sec.5.2.3, the capture distance for the Near-
field Image is determined by the maximum field of view (FOV) of
the capture device. Therefore, under this certain FOV, all captured
images meet the required distance for the Near-field Image. Simi-
larly, since the distance for the Far-field Image is a fixed multiple
of the near-field distance, when we adjust our zoom to this specific
multiple and capture an area approximately the same as that in the
Near-field Image, the shooting distance at that time will exactly meet
the requirements for Far-field Image.

5 EXPERIMENTS
To evaluate the quality of the SVBRDF recovered by our method,
we conducted a comparative experiment against the state-of-the-art
(SOTA). In addition, we also conducted ablation studies to analyze
the effects of various components in our method.

5.1 Comparison Experiments
We compared our method against SOTA multiple-image SVBRDF
estimation methods, including DIR [Gao et al. 2019], FSC [Deschain-
tre et al. 2019], and MGan [Guo et al. 2020]. Due to Zhu et al. [2023]
focusing on estimating SVBRDFwithout calibration and their source
code not being publicly available, we didn’t compare against theirs.
Instead, we compared our method against Gao et al. [2019] and
Guo et al. [2020], which are precisely calibrated and can serve as
substitutes for the comparison against Zhu et al. [Zhu et al. 2023].
Additionally, our comparative evaluation includes the latest single-
image SVBRDF estimation method [Wang et al. 2023]. These results
are obtained through the source code provided by their authors.
The optimization-based methods, DIR and MGan, utilize estimation
results of FSC as their initialization. For a more comprehensive com-
parison, we also obtained the synthetic results of the planar lighting
method LPL [Zhang et al. 2023] by contacting the authors.

5.1.1 Comparison on Synthetic Data. Firstly, we conducted a nu-
merical analysis on a collection of 122 synthetic scenes sourced
from Deschaintre et al. [2018; 2019]. Note that these test scenes
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Table 1. Numerical comparison on 122 synthetic scenes. We evaluate the
quality of estimated SVBRDF in terms of RMSE. The re-renderings (Ren.) for
each SVBRDF are performed on 30 random lighting directions and evaluated
by both RMSE and LPIPS. The lowest errors are highlighted in bold. The
upper part is a fair comparison against SOTA methods, the middle part
is a enhanced comparison by providing our near-far-combination inputs
for multi-image methods, and the bottom part is a challenging comparison
against multi-image methods with 20 inputs and planar lighting method.

RMSE↓ LPIPS↓
Methods N D R S Ren. Ren.
FSC 0.0578 0.0855 0.1636 0.0631 0.0775 0.2521
DIR 0.0544 0.0247 0.1490 0.0593 0.0729 0.1608

MGAN 0.0558 0.0247 0.1408 0.0572 0.0697 0.1731
DeepBasis 0.0537 0.0306 0.1574 0.0561 0.0550 0.1528

Ours 0.0195 0.0135 0.0316 0.0284 0.0310 0.0631
FSC+ 0.0726 0.1176 0.1858 0.0559 0.0857 0.3147
DIR+ 0.0700 0.0594 0.1578 0.0639 0.0591 0.1379

MGAN+ 0.0699 0.0354 0.1472 0.0433 0.0574 0.1360
FSC-20 0.0407 0.0836 0.1429 0.0606 0.0738 0.2267
DIR-20 0.0225 0.0152 0.1219 0.0594 0.0475 0.0642

MGAN-20 0.0301 0.0224 0.1007 0.0514 0.0472 0.0871
LPL 0.0359 0.0201 0.0486 0.0262 0.0452 0.1132

were never utilized during training. During the rendering of in-
put images, near-far-field relative capture distances were set to
2.414 and 10, respectively, corresponding to the common FOV of
approximately 60◦. The rationale behind selecting these capture
distances is detailed in Sec.5.2.3. The quality of reflectance parame-
ters was evaluated using Root Mean Square Error (RMSE), and the
re-rendered images were assessed using both RMSE and Learned
Perceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018]. The
re-renderings were performed under 30 random lighting and view-
ing directions. The numerical evaluation results are shown in Table
1. The upper part of the table provides a fair comparison with the
SOTA point-lighting methods. The metrics demonstrate that our
method achieves superior quality in estimated SVBRDF and in the
quality of re-rendered images. Furthermore, in the middle part of
Table 1, we conduct an enhanced comparison by providing our
novel combination of near-field and far-field images as the inputs
for SOTA multi-image method. Due to the training of DIR[Gao et al.
2019] and MGAN[Guo et al. 2020] being performed on the mate-
rial domain, their generated lantent space can be directly applied
to near-far inputs. The enhanced comparison demonstrates that
simply combining our near-far capture setting with latent-space
method can’t effectively improve reconstruction quality. The utiliza-
tion of explicit or implicit correlation between near-far-field images
from our method is crucial. Additionally, the bottom part shows a
challenging comparison against previous multi-image methods with
20 input images and the learned planar lighting method [Zhang
et al. 2023]. Even with the use of more input images or complex
extended lighting in their methods, ours still yields comparable
SVBRDF estimations and enhanced quality in re-rendered images.
Furthermore, we provided a visual comparison in Fig. 10. Due

that near-field point lighting only induce specular reflectance in
limited areas of material, it is insufficient to present the overall
specular features when appearance measurements are sparse. This
challenge is amplified in materials with strong diffuse reflectance,
where specular reflection information in appearance images is sig-
nificantly reduced. As a result, these methods like FSC, DIR, MGAN,

Fig. 5. The visual and numerical evaluation on Sartor et al. [2023].

and DeepBasis struggle to accurately reconstruct normal, roughness,
and specular maps. Even with the use of our novel combination of
near-field and far-field inputs, these SOTA multi-image methods
like FSC+, DIR+ and MGAN+ still cannot resolve the ambiguity
in parameter recovery, as shown in Fig. 11. Additionally, in Fig.12,
facing a more complex material, even when the number of input
images is increased to 20, methods such as FSC-20, DIR-20, MGAN-
20 are still unable to effectively recover the details of the roughness
and specular map. In LPL result, this problem is alleviated because
the specular reflectance responses are largely activated by planar
lighting. However, decoupling albedo maps is challenging given
that material and complex lighting patterns are highly entangled in
captured pixels. In contrast, far-field lighting can effectively activate
the overall specular reflectance of the material while avoiding the
demultiplexing of lighting patterns. Consequently, our approach
provides more accurate SVBRDF estimations and yields higher qual-
ity in re-rendered images.

Finally, we also conducted experiments on a diverse range of data
sources [Sartor and Peers 2023] and [Vecchio and Deschaintre 2024],
which contain 30 and 65 different test scenes, respectively. The visual
and numerical results shown in Fig. 5 and Fig. 6 lead to the same
conclusion: our method outperforms previous methods (MGAN-
2, DeepBasis) in a fair comparison and demonstrate comparable
performance in a challenging comparison (MGAN-20, LPL).

5.1.2 Comparison on Real Data. To perform evaluation, we gath-
ered 40 calibrated real scenes, similar to Guo et al. [2020]. Besides
inputs, each scene contains 10 reference images to evaluate the qual-
ity of novel lighting. To obtain the calibrated camera position for
comparison evaluation, additional markers surrounding the real ma-
terial need to be captured. This requirement restricts the maximum
FOV of the camera for near-field material capture. Consequently, a
relatively lower FOV of approximately 40◦ is used, corresponding
to near-far-field relative distances of 4 and 12, respectively. The real-
world near-far-field distances for capturing these scenes are about
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Fig. 6. The visual and numerical evaluation on Vecchio et al. [2024].

Table 2. Numerical Evaluation on 40 Real Scenes. Each scene contains
10 novel-lighting reference images, and we evaluate the re-rendering im-
ages by RMSE and LPIPS. The left part is a fair comparison against SOTA
methods, the middle part is a enhanced comparison by providing our near-
far-combination inputs for multi-image methods, and the right part is a
challenging comparison against multi-image methods with 20 inputs.

Fair Cmp. Enhanced Cmp. Challenging Cmp.
Methods RMSE↓ LPIPS↓ Methods RMSE↓ LPIPS↓ Methods RMSE↓ LPIPS↓
FSC 0.1543 0.3545 FSC+ 0.1543 0.3719 FSC-20 0.1484 0.3789
DIR 0.1018 0.2728 DIR+ 0.0992 0.2262 DIR-20 0.0833 0.2192

MGAN 0.0921 0.2408 MGAN+ 0.0800 0.2048 MGAN-20 0.0756 0.2120
DeepBasis 0.0986 0.2585

Ours 0.0760 0.1695 Ours 0.0760 0.1695 Ours 0.0760 0.1695

15cm and 45cm, respectively. The numerical comparison results are
shown in Table 2, indicating that our estimated SVBRDF can be
rendered closer to the reference. Additionally, the real calibration
process aligned all other views into top-view by homography trans-
formation. Because input images of enhanced comparison are both
captured at top-view with different distance, their aligned errors are
significantly lower than errors of arbitrary multi-view calibration in
challenging comparison. Therefore, we noticed that from enhanced
to challenging comparisons, the results of multi-image methods do
not improve consistently. In Fig. 15-15, we present a total of 6 visual
results for fair comparison, enhanced comparison, and challenging
comparison, respectively. Benefiting from the significant activation
of specular reflectance in Far-field Image and the extraction of the
relation map, our method can robustly estimate high-quality specu-
lar and roughness maps. Therefore, compared to other methods, our
approach can effectively decouple material ambiguity and produce
more accurate and cleaner SVBRDF maps. More visual results of
real scenes are available in supplementary material.

5.2 Ablation Studies

Fig. 7. The Effect of Near-field and Far-field Images. Numerical evaluations
using RMSE metrics for 122 synthetic data are displayed on the correspond-
ing parameter maps. The lowest RMSE values are highlighted in red. Two
near inputs effectively show diffuse reflectance properties, helping estimate
normal and diffuse maps but poorly recover roughness and specular maps
due to incomplete specular activation. Two far inputs have the opposite
effect. A combination of near and far inputs leverages both strengths.

Fig. 8. The Effect of Relation Map and Two-Branch Network. Numerical
evaluations using RMSE metrics for 122 synthetic data are displayed on the
corresponding parameter maps. The lowest RMSE values are highlighted
in red. Closeup column displays a detailed view of the red square area in
the specular map. Compared to the first row, the second row has a better
normal map estimation by integrating a relation map. In the third row, the
utilization of two-branch network avoids the feature extracted from the
relation map to misguide the estimation of diffuse and specular maps.

5.2.1 The Effect of Near-field and Far-field Images. To evaluate the
effectiveness of combining near-field and far-field images as inputs,
we constructed the following three sets of sub-experiments with
different input modes. The first set employed two near-field images
as inputs, the second utilized two far-field images, and the third
combined both near-field and far-field images as inputs. For a fair
comparison, each experiment used the original single-branch net-
work, and there is no addition of relation extraction module. We
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Fig. 9. The Effect of Capture Distance. All parameters are evaluated by
RMSE metrics on 122 synthetic data. We employed relative RMSE to com-
pactly display the all parameter variation . For the two charts, we take the
first value in each as the standard value, and other values are divided by it
to obtain a percentage. The results indicate that, within the limits permitted
by the camera’s FOV, the smaller near-field distance is the better, and under
a certain near-field distance, a relatively optimal far-field distance exists.

retrained the model with different input modes for each experiment,
and the training strategy were maintained completely consistent.
The results are shown in Fig. 7. Two near inputs, with abundant
spatial variations in lighting/viewing directions, more easily show
the diffuse reflectance properties, thus providing favorable condi-
tions to estimate normal and diffuse maps. However, the lack of
sufficient activation on specular reflectance leads to failed detail es-
timation in roughness and specular maps. Conversely, two far-field
images produce the opposite effect. Thus, combining both types of
images effectively utilizes complementary information, enabling a
high-quality reconstruction of SVBRDF parameters.

5.2.2 The Effect of Relation Extraction and Two-Branch Network.
To evaluate the effect of two-branch network, we conducted an
experiment using a single branch to process all inputs (denoted as
w/o TBNet). Furthermore, we used only Near-field Image and Far-
field Image as the input for single-branch network to evaluate the
effect of relation extraction (denoted as w/o RE). The results are
shown in Fig.8. According to the comparison between w/o TBNet
and Ours, two-branch network ensures the feature extracted from
relation map can not be utilized by the estimation of diffuse and
specular maps. This reduces ambiguity among these SVBRDF maps,
as indicated by two red arrows in Fig.8. Moreover, the comparison
between w/o TBNet and w/o RE demonstrates that the extracted
relation map also improves the estimated quality of normal map.

5.2.3 The Effect of Capture Distance. To facilitate discussion, we
define the captured region of material sample as a square. The half
of side length of this square is considered as a standard unit for
measurement. All distances mentioned subsequently adhere to this
standard unit, and the models of different experiments are re-trained
under the corresponding configuration. In experiments evaluating
far-field capture distances, the near-field distance was fixed at 2.414
according to the common FOV of mobile phones, while the far-field
distance ranged from 6 to 14. The results, shown in the left part
of Fig.9, indicate that increasing the far-field distance improves
the reconstructed quality of roughness and specular due to better
specular reflectance capture. However, this reduces the spatial vari-
ations in lighting directions, negatively impacting the accuracy of
normal and diffuse estimations. The errors are also coupled into
the estimation of roughness and specular, collectively influencing

the rendering results. Therefore, it is evident that increasing the
far-field distance does not uniformly enhance results. There exists
an optimal distance, and it is 10 in the current experimental setup.
Additionally, we evaluated the effect of near-field distance. In these
experiments, with the far-field distance fixed at 10, the near-field
distance varied from 2.414 to 6. As shown in the right part of Fig.9,
increasing near-field distance worsens normal and diffuse estima-
tions, reducing re-rendering quality. In summary, within the limits
permitted by the camera’s FOV, the smaller the near-field distance
is the better, and under a certain near-field distance, a relatively
optimal far-field distance exists.

5.2.4 The Effect of Denoising Network. To evaluate the impact of
various noise types on denoising network performance, we individ-
ually modulated the intensity of each noise type, producing input
images with varying noise levels for 122 synthetic datasets. These
predicted denoised images were then evaluated using the RMSEmet-
ric against the Ground Truth. The numerical results are displayed
in the upper part of Fig.13. It is evident that within the maximum
error range used in our training, although denoising accuracy de-
grades as noise intensity increases, the overall rate of change is still
relatively slow. This demonstrates that within this predefined range,
the denoising network maintains robust performance. Additionally,
we present two visual examples of denoising results in the lower
part of Fig.13. The left example shows a low-roughness material pri-
marily affected by noise from lighting position offsets. Conversely,
the right example presents a high-roughness material, which suffers
significantly from LSNR noise due to its far-field image’s low bright-
ness. A comparison with the Ground Truth (GT) illustrates that the
denoising network effectively alleviates both types of noises.

6 LIMITATION AND FUTURE WORK
Although Far-Field Image has a lower lighting intensity compared to
Near-Field Image, it still experiences over-exposure issues when fac-
ingmirror-like materials. The loss of information in over-exposed ar-
eas results in noticeable artifacts within the reconstructed SVBRDF.
We illustrate an example of mirror-like material in Fig.14. Further-
more, we provide a comparison with other SOTA methods. Notably,
the planar lighting approach used by LPL [Zhang et al. 2023] ef-
fectively mitigates over-exposure issues. Nonetheless, this method
also introduces complications related to the decoupling of light-
ing patterns. In future work, exploring the integration of planer
lighting and point lighting could potentially enable the accurate
reconstruction of high-quality SVBRDF for mirror-like materials.

7 CONCLUSION
We have proposed NFPlight, a novel method to estimate SVBRDF
using the combination of near-field and far-field input images. The
addition of Far-field Image offers a comprehensive activation of
specular reflectance, which complements the lost information in
Near-field Image. Based on these two inputs, we found that their
subtraction reflects the slope of specular reflectance, which is highly
related to the roughness estimation. Furthermore, we designed a
two-branch network to fully leverage this relation for better SVBRDF
estimation. Additionally, to obtain the available two input images
during hand-held capture, we introduce an auto registration module
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and a denoising network. Extensive experiments conducted on both
synthetic scenes and real-world captured images have demonstrated
that our method outperforms SOTA techniques, yielding higher-
quality SVBRDF reconstruction results.
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Fig. 10. Fair comparison on synthetic data against FSC of Deschaintre et al.
[2019], DIR of Gao et al. [2019], MGAN of Guo et al. [2020], DeepBasis of
Wang et al. 2023. The last row is the Ground Truth (GT).

Fig. 11. Enhanced Comparison on Synthetic Data. We provide our novel
combination of near-field and far-field inputs to FSC+, DIR+, MGAN+.

Fig. 12. Challenging comparison on synthetic data against multi-image
methods with 20 inputs and planer-light method LPL of [Zhang et al. 2023].

Fig. 13. The Evaluation of Denoising Accuracy. The upper part is the eval-
uation of denoising accuracy and SVBRDF estimation accuracy, with the
variation in lighting position offset and LSNR noise intensity. Position off-
sets are categorized into two groups, X/Y-axis and Z-axis, to account for
their differing standard deviations. To unify the scale of variations in differ-
ent noise intensities, we adopt relative noise offsets as a measure of noise
variation. For each type of noise, we use the maximum allowable offset in
our experiments as the baseline (100 percent). The results show that within
our allowed maximum error range, the increase in noise has a relatively
small impact on denoising accuracy. The bottom part shows two represen-
tative materials along with their input images, denoised outputs, and the
corresponding GT images. Additionally, error maps comparing these results
with the GT are provided to enhance visualization. The results demonstrate
that the denoising network mitigates issues caused by lighting position
offsets and LSNR noise.

Fig. 14. Failure Case. This sample is a mirror-like material that has a ex-
tremely low roughness value. This leads to the over-exposure issue in both
Near-Field Image and Far-Field Image., resulting the artifacts exiting in the re-
constructed SVBRDF. We also provide the results estimated by MGAN[Guo
et al. 2020], DeepBasis[Gao et al. 2019], and LPL[Zhang et al. 2023].
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Fig. 15. Fair Comparison on Real Data. We compare our results against FSC of Deschaintre et al. [2019], DIR of Gao et al. [2019], MGAN of Guo et al. [2020]
and DeepBasis of Wang et al. 2023.

Fig. 16. Enhanced Comparison on Real Data. We provide our novel combination of near-field and far-field inputs to FSC+, DIR+, MGAN+.

Fig. 17. Challenging comparison on real data against multi-image methods with 20 inputs.
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